Two genetic codes: Repetitive syntax for active non-coding RNAs; non-repetitive syntax for the DNA archives
نویسنده
چکیده
Current knowledge of the RNA world indicates 2 different genetic codes being present throughout the living world. In contrast to non-coding RNAs that are built of repetitive nucleotide syntax, the sequences that serve as templates for proteins share-as main characteristics-a non-repetitive syntax. Whereas non-coding RNAs build groups that serve as regulatory tools in nearly all genetic processes, the coding sections represent the evolutionarily successful function of the genetic information storage medium. This indicates that the differences in their syntax structure are coherent with the differences of the functions they represent. Interestingly, these 2 genetic codes resemble the function of all natural languages, i.e., the repetitive non-coding sequences serve as appropriate tool for organization, coordination and regulation of group behavior, and the non-repetitive coding sequences are for conservation of instrumental constructions, plans, blueprints for complex protein-body architecture. This differentiation may help to better understand RNA group behavioral motifs.
منابع مشابه
The Role of Long Non Coding RNAs in the Repair of DNA Double Strand Breaks
DNA double strand breaks (DSBs) are abrasions caused in both strands of the DNA duplex following exposure to both exogenous and endogenous conditions. Such abrasions have deleterious effect in cells leading to genome rearrangements and cell death. A number of repair systems including homologous recombination (HR) and non-homologous end-joining (NHEJ) have been evolved to minimize the fatal effe...
متن کاملThe Roles of Long non-coding RNAs (lncRNA) in Prostate Cancer
Background & Objective: Prostate cancer is a compound condition in which gene expression has altered. Several surveys have revealed that genetic components have been involved in prostate cancer progression. Findings proposed that they can modify a noteworthy portion of disposing of elements, which is associated to the developing prostate cancer in protein coding sequences. The purpose of this r...
متن کاملFunctional repeat-derived RNAs often originate from retrotransposon-propagated ncRNAs
The human genome is scattered with repetitive sequences, and the ENCODE project revealed that 60-70% of the genomic DNA is transcribed into RNA. As a consequence, the human transcriptome contains a large portion of repeat-derived RNAs (repRNAs). Here, we present a hypothesis for the evolution of novel functional repeat-derived RNAs from non-coding RNAs (ncRNAs) by retrotransposition. Upon ampli...
متن کاملReverse Engineering of Network Software Binary Codes for Identification of Syntax and Semantics of Protocol Messages
Reverse engineering of network applications especially from the security point of view is of high importance and interest. Many network applications use proprietary protocols which specifications are not publicly available. Reverse engineering of such applications could provide us with vital information to understand their embedded unknown protocols. This could facilitate many tasks including d...
متن کاملAt the intersection of non-coding transcription, DNA repair, chromatin structure, and cellular senescence
It is well accepted that non-coding RNAs play a critical role in regulating gene expression. Recent paradigm-setting studies are now revealing that non-coding RNAs, other than microRNAs, also play intriguing roles in the maintenance of chromatin structure, in the DNA damage response, and in adult human stem cell aging. In this review, we will discuss the complex inter-dependent relationships am...
متن کامل